Transductive Zero-Shot Learning with a Self-training dictionary approach

نویسندگان

  • Yunlong Yu
  • Zhong Ji
  • Xi Li
  • Jichang Guo
  • Zhongfei Zhang
  • Haibin Ling
  • Fei Wu
چکیده

As an important and challenging problem in computer vision, zero-shot learning (ZSL) aims at automatically recognizing the instances from unseen object classes without training data. To address this problem, ZSL is usually carried out in the following two aspects: 1) capturing the domain distribution connections between seen classes data and unseen classes data; and 2) modeling the semantic interactions between the image feature space and the label embedding space. Motivated by these observations, we propose a bidirectional mapping based semantic relationship modeling scheme that seeks for crossmodal knowledge transfer by simultaneously projecting the image features and label embeddings into a common latent space. Namely, we have a bidirectional connection relationship that takes place from the image feature space to the latent space as well as from the label embedding space to the latent space. To deal with the domain shift problem, we further present a transductive learning approach that formulates the class prediction problem in an iterative refining process, where the object classification capacity is progressively reinforced through bootstrapping-based model updating over highly reliable instances. Experimental results on three benchmark datasets (AwA, CUB and SUN) demonstrate the effectiveness of the proposed approach against the state-of-the-art approaches.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transductive Multi-label Zero-shot Learning

Zero-shot learning has received increasing interest as a means to alleviate the often prohibitive expense of annotating training data for large scale recognition problems. These methods have achieved great success via learning intermediate semantic representations in the form of attributes and more recently, semantic word vectors. However, they have thus far been constrained to the single-label...

متن کامل

Transductive Zero-Shot Learning with Adaptive Structural Embedding

Zero-shot learning (ZSL) endows the computer vision system with the inferential capability to recognize new categories that have never seen before. Two fundamental challenges in it are visual-semantic embedding and domain adaptation in cross-modality learning and unseen class prediction steps, respectively. This paper presents two corresponding methods named Adaptive STructural Embedding (ASTE)...

متن کامل

Transductive Zero-Shot Hashing via Coarse-to-Fine Similarity Mining

Zero-shot Hashing (ZSH) is to learn hashing models for novel/target classes without training data, which is an important and challenging problem. Most existing ZSH approaches exploit transfer learning via an intermediate shared semantic representations between the seen/source classes and novel/target classes. However, due to having disjoint, the hash functions learned from the source dataset ar...

متن کامل

Transductive Unbiased Embedding for Zero-Shot Learning

Most existing Zero-Shot Learning (ZSL) methods have the strong bias problem, in which instances of unseen (target) classes tend to be categorized as one of the seen (source) classes. So they yield poor performance after being deployed in the generalized ZSL settings. In this paper, we propose a straightforward yet effective method named Quasi-Fully Supervised Learning (QFSL) to alleviate the bi...

متن کامل

Transfer Learning in a Transductive Setting

Category models for objects or activities typically rely on supervised learning requiring sufficiently large training sets. Transferring knowledge from known categories to novel classes with no or only a few labels is far less researched even though it is a common scenario. In this work, we extend transfer learning with semi-supervised learning to exploit unlabeled instances of (novel) categori...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1703.08893  شماره 

صفحات  -

تاریخ انتشار 2017