Transductive Zero-Shot Learning with a Self-training dictionary approach
نویسندگان
چکیده
As an important and challenging problem in computer vision, zero-shot learning (ZSL) aims at automatically recognizing the instances from unseen object classes without training data. To address this problem, ZSL is usually carried out in the following two aspects: 1) capturing the domain distribution connections between seen classes data and unseen classes data; and 2) modeling the semantic interactions between the image feature space and the label embedding space. Motivated by these observations, we propose a bidirectional mapping based semantic relationship modeling scheme that seeks for crossmodal knowledge transfer by simultaneously projecting the image features and label embeddings into a common latent space. Namely, we have a bidirectional connection relationship that takes place from the image feature space to the latent space as well as from the label embedding space to the latent space. To deal with the domain shift problem, we further present a transductive learning approach that formulates the class prediction problem in an iterative refining process, where the object classification capacity is progressively reinforced through bootstrapping-based model updating over highly reliable instances. Experimental results on three benchmark datasets (AwA, CUB and SUN) demonstrate the effectiveness of the proposed approach against the state-of-the-art approaches.
منابع مشابه
Transductive Multi-label Zero-shot Learning
Zero-shot learning has received increasing interest as a means to alleviate the often prohibitive expense of annotating training data for large scale recognition problems. These methods have achieved great success via learning intermediate semantic representations in the form of attributes and more recently, semantic word vectors. However, they have thus far been constrained to the single-label...
متن کاملTransductive Zero-Shot Learning with Adaptive Structural Embedding
Zero-shot learning (ZSL) endows the computer vision system with the inferential capability to recognize new categories that have never seen before. Two fundamental challenges in it are visual-semantic embedding and domain adaptation in cross-modality learning and unseen class prediction steps, respectively. This paper presents two corresponding methods named Adaptive STructural Embedding (ASTE)...
متن کاملTransductive Zero-Shot Hashing via Coarse-to-Fine Similarity Mining
Zero-shot Hashing (ZSH) is to learn hashing models for novel/target classes without training data, which is an important and challenging problem. Most existing ZSH approaches exploit transfer learning via an intermediate shared semantic representations between the seen/source classes and novel/target classes. However, due to having disjoint, the hash functions learned from the source dataset ar...
متن کاملTransductive Unbiased Embedding for Zero-Shot Learning
Most existing Zero-Shot Learning (ZSL) methods have the strong bias problem, in which instances of unseen (target) classes tend to be categorized as one of the seen (source) classes. So they yield poor performance after being deployed in the generalized ZSL settings. In this paper, we propose a straightforward yet effective method named Quasi-Fully Supervised Learning (QFSL) to alleviate the bi...
متن کاملTransfer Learning in a Transductive Setting
Category models for objects or activities typically rely on supervised learning requiring sufficiently large training sets. Transferring knowledge from known categories to novel classes with no or only a few labels is far less researched even though it is a common scenario. In this work, we extend transfer learning with semi-supervised learning to exploit unlabeled instances of (novel) categori...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1703.08893 شماره
صفحات -
تاریخ انتشار 2017